skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valenzuela, Jacob J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Consequential STEM experiences in informal settings can address issues of equity by fully engaging historically marginalized high school students in complex socio-scientific issues. However, inclusive and effective programs are in high demand, and there is little research on what specific aspects, context, and timeframes are most important when scaling these experiences. Using a mixed method approach, this study demonstrates that students make significant gains, in the short and long term, through in-person and remote informal programs ranging between 22-h and 320-h. Progress across STEM learning constructs is attributed to authentic research experiences, students’ connections to STEM professionals, direct hands-on participation in projects, and group work. Relative to formal education settings, research-based informal STEM programs can be implemented with minimal resources, can maintain effectiveness while scaling, and work towards addressing the societal challenge of improving STEM learning and outcomes for high school students from historically marginalized communities. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. Acidification of the ocean due to high atmospheric CO 2 levels may increase the resilience of diatoms causing dramatic shifts in abiotic and biotic cycles with lasting implications on marine ecosystems. Here, we report a potential bioindicator of a shift in the resilience of a coastal and centric model diatom Thalassiosira pseudonana under elevated CO 2 . Specifically, we have discovered, through EGFP-tagging, a plastid membrane localized putative Na + (K + )/H + antiporter that is significantly upregulated at >800 ppm CO 2 , with a potentially important role in maintaining pH homeostasis. Notably, transcript abundance of this antiporter gene was relatively low and constant over the diel cycle under contemporary CO 2 conditions. In future acidified oceanic conditions, dramatic oscillation with >10-fold change between nighttime (high) and daytime (low) transcript abundances of the antiporter was associated with increased resilience of T. pseudonana . By analyzing metatranscriptomic data from the Tara Oceans project, we demonstrate that phylogenetically diverse diatoms express homologs of this antiporter across the globe. We propose that the differential between night- and daytime transcript levels of the antiporter could serve as a bioindicator of a shift in the resilience of diatoms in response to high CO 2 conditions in marine environments. 
    more » « less